Module 1:- Getting Started with Excel
- Introduction to Excel 2013/2016/2019/Office 365
- Application Interface and Key Components of Excel
- Navigating Through Excel Ribbon Tabs
- Exploring Important Excel Options*
- Live Session Exercise
- Splitting data of Single Column into multiple
- 10 Examples to use Auto-fill and Flash Fill
- Magic of Go-To Special
- Merge/Unmerge Cells & Wrap Text
- Extracting Unique Values & Important Ribbon, General and Data Entry Keyboard Shortcuts
Module 2:- Formatting Essentials
- Formatting Essentials Introduction
- Custom Cell Number Formats
- Custom Date/Time Formats
- Working with Comments / Notes
- Format Painter – A Quick way to copy ‘Formatting Attribute’
- Paste Special
- Table, Table Styles & Formatting
- Freeze Panes
Module 3:- Functions & Formulas
- Introduction to Excel Functions and Formulas
- Basics of Functions & Formulas
- Working with Cell References Types
- Most Used Basics & Advanced Functions & Formulas
- Working with Array Formulas
- Creating Customized Formulas Step-by-Step with Live examples
- Creating and Working with Dynamic Ranges using Function and Excel Table features
- Formulas Debugging / Formulas Auditing
- Types of Formula Errors / Error Handling Tricks
- Text Functions: – CLEAN, CONCATENATE, LEFT, RIGHT, MID, LEN, FIND, SEARCH, SUBSTITUTE, and TEXT, etc.
- Date & Time Functions: – DATE, DAYS, TIME, NOW, WEEKNUM, WORKDAY, and WORKDAY.INTL etc.
- Math & Trig Functions: – INT, MOD, ROUND, ROUNDDOWN, SUMIF, SUMIFS, SUMPRODUCT etc.
- Statistical Functions: – AVERAGE, COUNT, COUNTA, COUNTBLANK, MAX, MIN, LARGE etc.
- Logical Functions: – IF, IFS, AND, OR, and IFERROR.
- Lookup & Reference Functions: – FORMULATEXT, VLOOKUP, HLOOKUP, INDEX, MATCH, INDIRECT, and OFFSET
- Newly Introduced Functions in Recent Version of Excel*: – CONCAT, TEXTJOIN, IFS, SWITCH, DGET, UNIQUE, FILTER, etc.
- Nested Conditions/Customize Formulas*
Module 4:- Data Analysis
- Data Sorting
- Data Filtering
- Named Ranges
- 10 different ways to use Conditional Formatting
- 10 different use of Data Validation
- What-If Analysis
Module 5:- Excel Charts
- Introduction to Excel Charts
- Exploring the most commonly used Charts and Templates
- Basics of Charts
- Selecting Requirement based Charts
- Working with Basic Charts:
- Creating Customized / Advanced Charts
- Creating Dynamic Chart
- Working with Dynamic Interactive Charts in Excel using Drop Down
- Working with Chart Elements, Formatting, Chart Styles, Properties, etc.
Module 6:- Pivot Tables
- Introduction to Pivot Table
- Creating a Pivot Table
- Use of Calculated Fields/Items
- Pivot Table Formatting
- Grouping Items & Summarizing data in Pivot Tables
- Grouping and Bucketing data in Pivot Table
- Changing/Modifying Data Sources
- Working with Pivot Table Designs & Layouts
- Exploring Important Pivot Table Options & Field Settings
- Pivot Table Filters
- Changing Pivot Table Summary Calculation
- Use of Slicers in Pivot Table
- Using Source Data to Convert into Infographic Summary
- Introduction to Pivot Charts
Module 1:- Getting Started with My SQL
- An Introduction and Overview of MySQL
- Installation and GUI Tools
- An Overview
Module 2:- My SQL Fundamentals
- Introducing SELECT statement
- Introducing WHERE clause
- Sort result with ORDER BY
- Using FROM to specify the source tables
- Importance of Clause Orders
- Data Modification tricks
Module 3:- Creating Database & Tables
- Creating a database
- Creating a table
- Creating Indexes
- Controlling column behavior with constraints
- Using foreign key constraints
- Creating an ID column
- Changing a schema with ALTER
- Introducing NULL and NOT_NULL
- Introduction to MySQL Data Types
- Setting up default values
- MySQL Warnings
- Alerting a table
Module 4:- My SQL Functions & Clause
- Introduction to MySQL Functions
- String Functions – CONCAT, SUBSTRING, REPLACE, REVERSE, LENGTH, UPPER, LCASE etc.
- Aggregate Functions – COUNT, MIN, MAX, SUM, AVG, ROUND etc
- Date/Time Functions – CURDATE, CURTIME, CURRENT_DATE, LOCALTIME etc.
- Control Flow Functions – IF, IFNULL, NULLIF etc.
Module 5:- Multiple Tables & Joins
- Introduction to JOINS
- Different types of JOINS
- JOINS and Aliases
- Multiple Table Joins
- Creating a simple Subselect
- Understanding of Primary keys and Foreign keys
Module 6:- Transactions, Stored Routines & Triggers
- Transactions & Stored Routines
- Triggers
Bonus Modules
- Creating a New User Login
- Granting access to new users
- Backup and Restore databases
- Important Keyboard Shortcuts Guide
- Session Study Material
- Situational Case Studies for Best Practice and Getting Ready for Corporate World
- 6 Months Live Support via Phone/Email/Messages
Module 1:- Getting Started with Tableau
- Introduction to Data Visualization
- Leading Data Visualization Tools
- Introduction to Tableau
- Exploring Interface and Important Key Components
- Navigating Through Tableau Menu Tabs
- Exploring Each Menu Tab i.e. File, Data, Worksheet, Dashboard, Story, Analysis, Map, Format, Server, etc.*
- Tableau – Design Flow
- File Types
- Tableau Data Types
- Show Me
- Data Terminology
Module 2:- Connecting to Data with Tableau Desktop
- Introduction to Data Connection
- Data Source Interface
- Types of Data Connections
- Extracting Data
- Custom Data View
- Joins and Unions
- Data Blending
- Live Connection Vs Extract
- Field Operations
- Basic Project Activity
Module 3:- Examining & Filtering
- The Sheet Interface
- Dimensions & Measures
- Hierarchies
- Data Granularity
- Highlighting
- Data Sorting
- Grouping Data
- Data Filtering
- Data Source Filters
- The Filter Shelf
- Dimension Filters & Card Modes
- Context Filters
- Measure Filters
- Creating Sets
Module 4:- Field Types & Charts
- Utilize Auto-Generated Fields
- Use Titles, Captions and Tooltips Effectively
- Creating Bins
- ToolTip
- Basic Charts
Module 5:- Calculations in Tableau
- What are Calculations
- Methods to Create Calculated Field
- Introduction to Tableau Functions
- Operator and Syntax Conventions
- Introduction to Table Calculations
Module 6:- Level of Detail (LOD) Expression
- Level of Detail (LOD) Calculations
- Live Use Cases of LOD
- Introduction to Parameters
- Parameters Data Type Options
Module 7:- Geographical Visualization
- Introduction to Geographic Visualizations
- Assigning Geographical Locations
- Spatial Files
- Map Types
- Custom Geocoding
- Background Image
Module 8:- Advanced Charts in Tableau
- Introduction to Advanced Charts
- Bar in Bar Chart
- Bullet Chart
- Pareto Chart
- Gantt Chart
- Hierarchy and Tree Maps
- Box and Whisker’s Plot
- Waterfall Chart
- Step and Jump Lines
- Maps on a Scatter Plot
- Bubble Chart
- Control Chart
- Funnel Chart
- Packaged Bubbles
- Word Cloud
- Donut Chart
- Trendlines
- Reference Line, Bands, and Distributions
Module 9:- Dashboard & Stories
- Introduction to Dashboards
- The Dashboard Interface
- Important Dashboard Objects
- Adding Objects to the Dashboard
- Building a Dashboard
- Dashboard Design and Formatting
- Types of Actions
- Designing Dashboard for Tablets & Mobile-Phones
- Story Points
- Sharing Workbook
- Wrapping up Tableau Program
Module 1:- Installing & Running Python
- Python 2.7 vs Python 3
- Local Environment Setup
- Installing Python on different platforms(Windows and Linux)
- Python Interpreter and Python Interactive Shell
- Python IDE(Pydev, Pycharm,VIM)
Module 2:- Python Introduction
- Python Overview
- History Of Python
- CPython, Jython, PyPy
- Python Features
- Areas Of Application of Python
- Understanding More About Python
- Writing your First Python Program
- Interactive Mode Programming
- Script Mode Programming
- Dir and help: Getting help from the Python interpreter.
Module 3:- Python Syntax ,Keywords and Operators
- Python Identifiers
- Various Operators and Operators Precedence
- Reserved Words,Lines and Indentation
- Multi-Line Statements,Quotation in Python
- Comments in Python,Using Blank Lines
- Command Line Arguments
- Python Input/Output:Using the Print Function
- Getting Input from User
- Python Basic Data Types And Variables
- Binary, octal and hexadecimal numbers
- Convert one data type to another
Module 4:- Expressions, Statements, Variables, Strings
- Working With Numbers
- Working With Booleans
- Math library and its various operations
- Working with Strings
- String types and formatting
- String Operations and Task
- Program to find duplicate characters in a String.
- Program to reverse a string
- Program to check if String is Palindrome
- Program to remove a newline in Python
Module 5:- Python Data Types: List,Tuples,Dictionaries
- Python Lists, Tuples, Dictionaries
- Accessing Values
- Basic Operations
- Indexing, Slicing, and Matrixes
- Built-in Functions & Methods
- Exercises on List, Tuples And Dictionary
- Remove Duplicate from Lists
- Program to find the index of an item of a tuple
- Python program to convert a list to a tuple
- Python program to reverse a tuple
- Program to convert a tuple to a dictionary
Module 6:- Making Decisions – if Statements
- The Relational Operators
- The Logical Operators
- Simple if Statement,if-else Statement
- If-elif Statement
- More Advanced If, ElIf & Else Processing
Module 7:- Loop Control
- Introduction To while Loops
- Count-Controlled while Loops
- Event-Controlled while Loops
- Using continuE,Using break
- Introduction To for Loops
- For loops with files,list,tuples and dictionaries
Module 8:- Iterators
- Understanding Iterators
- Using iter And next
- Iterators And Dictionaries
- Other Iterators
Module 9:- Functions And Scopes
- Introduction To Functions – Why
- Defining Functions
- Calling Functions
- Functions With Multiple Arguments
- Predicate Functions,Recursive Functions
- Function Objects,Generators,Decorators
- Anonymous Functions, Higher-Order Functions
- Scope , Global Scope, Local Scope , Nested Scope
Module 10:- Modules and Packages
- Using Built-In Modules
- User-Defined Modules
- Module Namespaces
- Installing and Uninstalling a package
- Package vs Library vs Module
Module 11:- File I/O
- Printing to the Screen
- Reading Keyboard Input
- Opening and Closing Files
- Open Function,file Object Attributes
- close() Method ,Read,write,seek
- Rename,remove,
- Mkdir,chdir,rmdir
Module 12:- Error And Exceptional Handling
- Exception Handling, Assertions: The assert Statement
- What is Exception, Handling an exception
- The except Clause with No Exceptions, the try-finally Clause
- The argument of an Exception, Raising an Exceptions
- User-Defined Exceptions
Module 13:- Regular Expression
- Matching and Searching- match() and search() Functions
- Search and Replace
- Regular Expression Modifiers
- Regular Expression Patterns
- Regular Expression Quantifiers
Module 14:- Introduction to Data Science and Machine Learning
- Matching and Searching- match() and search() Functions
- Search and Replace
- Regular Expression Modifiers
- Regular Expression Patterns
- Regular Expression Quantifiers
Module 15:- Tools & Languages available
- Python .R
- Python & R Differences
- Python Distribution
- Python tools for Data Science
- Anaconda Installation
- Jupiter Notebook Usage and Examples
Module 16:- Numpy
- Introduction to Numpy. Array
- Creation,Printing Arrays
- Basic Operations- Indexing, Slicing and Iterating
- Shape Manipulation – Changing
- Shape,stacking and spliting of array
- Random number
Module 17:- Pandas, Matplotlib and Seaborn
Pandas
- Introduction to Pandas
- Importing data into Python
- Pandas Data Frames,Indexing Data
- Frames ,Basic Operations With Data
- frame,Renaming Columns,Subletting and filtering a data frame.
Matpolib
- Introduction,plot(),Controlling Line
- Properties,Working with Multiple
- scatter, hist, bar, piechart
- subplot, titles, axis, colormap
- Figures,Histograms
Seaborn
- Plot for categorical and numerical data
- Plot for categorical vs numerical, numerical vs numerical, categorical vs categorical
- distplot, jointplot, boxplot, barplot, countplot, violinplot, swarmplot
Module 18:- Exploratory Data Analysis
- Data Manipulations and Wrangling
- Drawing Insights and Completing analysis
- Imputing NA values
Module 1: Introduction to Artificial Intelligence and Machine Learning
- Overview of Artificial Intelligence
- Historical perspective and evolution
- Types of AI: Narrow AI vs. General AI
- Introduction to Machine Learning
- Applications of AI and Machine Learning in various domains
Module 2: Python Programming for Machine Learning
- Introduction to Python for Data Science
- NumPy and Pandas for data manipulation
- Matplotlib and Seaborn for data visualization
- Introduction to Jupyter Notebooks
Module 3: Mathematics for Machine Learning
- Linear Algebra for Machine Learning
- Calculus for Machine Learning
- Probability and Statistics for Machine Learning
Module 4: Supervised Learning
- Linear Regression
- Logistic Regression
- Decision Trees and Random Forests
- Support Vector Machines (SVM)
- Evaluation metrics for classification and regression
Module 5: Unsupervised Learning
- K-Means Clustering
- Hierarchical Clustering
- Principal Component Analysis (PCA)
- Association Rule Mining
Module 6: Feature Engineering and Model Selection
- Feature scaling and normalization
- Feature extraction
- Cross-validation
- Hyperparameter tuning
- Model evaluation and selection
Module 7: Introduction to Neural Networks
- Basics of neural networks
- Perceptrons and Multi-layer Perceptrons
- Activation functions
- Backpropagation algorithm
Module 8: Deep Learning Frameworks
- Introduction to TensorFlow and PyTorch
- Building and training simple neural networks
- Convolutional Neural Networks (CNNs) for image processing
- Recurrent Neural Networks (RNNs) for sequence data
Module 9: Natural Language Processing (NLP)
- Text preprocessing
- Word embeddings
- Named Entity Recognition (NER)
- Sentiment analysis
- Introduction to chatbots
Module 10: Reinforcement Learning
- Introduction to Reinforcement Learning
- Markov Decision Processes (MDPs)
- Q-learning and Policy Gradient methods
Module 11: Machine Learning in Practice
- Feature importance and model interpretation
- Model deployment and serving
- Model monitoring and maintenance
- Ethical considerations in Machine Learning
Module 12: Capstone Project
- Apply the knowledge gained in a real-world project
- Work on a problem statement using Machine Learning techniques
- Present findings and solutions
Module 13: Emerging Trends and Future Directions
- AutoML (Automated Machine Learning)
- Explainable AI
- Transfer Learning
- Federated Learning
Resources:
- Coding exercises and projects
- Guest lectures from industry experts
Module 1:- Getting Started With R
- Introduction To R
- Installation Setup
- A quick guide to RStudio User Interface
- RStudio’s GUI3
- Changing the appearance in RStudio
- Installing packages in R and using the library
- Development Environment Overview
- Introduction to R basics
- Building blocks of R
- Core programming principles
- Fundamentals of R
Module 2:- Programming with R
- Creating an object
- Data types in R
- Coercion rules in R
- Functions and arguments
- Conditional Statements and Loops
- if else, for, while, repeat, break, next
Module 3:- Objects in R
- Vectors and Vector operation
- List and Operations
- Factor and Operations
- Matrices
- Data Frame
- Applications of R objects
- Data Inputs and Outputs with R
- Advanced Visualization
- Using the script vs. using the console
Module 4:- Manipulating Data
- Data transformation with R
- Dplyr package
- Sampling data with the Dplyr package
- Select, filter, arrange, rename
- Mutate, pipeline
- Group by, summarize
Module 5:- Start Visualizing Data
- Intro To Data Visualization
- Introduction To Ggplot2
- Coloring, Filling Color, Axis, Legend, Labelling
- Histogram, Density
- Bar Chart, Point Plot
- Box And Whiskers Plot, Outliers
- Scatterplot
- Pie Chart
Module 6:- Projects & Assignments
- 2 Assignments
- 1 Projects
- Dataset Analysis